FÍSICA BÁSICA - MODULO III Estructura de la materia.
-Introducción histórica-
El conocimiento del átomo ha tenido un desarrollo muy lento, ya que la gente se limitaba a especular sobre él. El átomo actual, tal y como se conoce hoy, ha pasado por un proceso de estudio e investigación muy largo.Las teorías griegas relativas a la naturaleza de la materia se orientaron en realidad por causa del influjo del pensamiento astrológico o astronómico babilónico.
La primera doctrina cosmológica aparece en el siglo V a.c con Empédocles de Agrigento, según la cual existen cuatro elementos fundamentales: fuego, tierra, aire y fuego; de cuya interacción está regida por dos grandes fuerzas, el odio y el amor.
Hacia el 420 a.c, Demócrito, fue el primero en afirmar que la materia está compuesta por átomos. , y que estos eran indivisibles. La palabra 'átomo' se empleaba para referirse a la parte de la materia más pequeña que podía concebirse. Esa 'partícula fundamental' se consideraba indestructible, indivisible.
Aristóteles (384 – 322 a.c) supuso que los 4 elementos antes citados estaban adornados por cuatro características o cualidades fundamentales: caliente, frio, húmedo y seco; originándose la materia en sus infinitas formas por la combinación de unas y otras.
En los siglos xvi y xvii, con la llegada de la ciencia experimental, los avances en la teoría atómica se hicieron más rápidos. Los químicos se dieron cuenta de que todos los líquidos, gases y sólidos se pueden descomponer en sus constituyentes últimos o elementos. Por ejemplo, se supo que la sal está compuesta por Na y Cl ligados en unión intima conocida como compuesto químico. El aire, resulto ser mezcla de gases N y O.
Dalton es una figura significativa, en 1803 convirtió la teoría atómica en algo cuantitativo. Mostro que los átomos se unían entre sí en proporciones definidas. Las investigaciones demostraron que los átomos suelen formar: moléculas (grupos de átomos). Cada molécula de H2O, está formada por un átomo único de O y dos de H unidos por una fuerza eléctrica denominada enlace químico.
Todos los átomos de un determinado elemento tienen las mismas propiedades químicas. Las propiedades químicas de los elementos varían entre sí, sus átomos se combinan de formas muy variadas para formar numerosos compuestos químicos diferentes. Los gases nobles, por ejemplo, (Helio, Neón) son inertes, no reaccionan con otros elementos salvo en condiciones especiales. Son elementos mono atómicos, con un solo tipo de átomo por molécula. A diferencia del O2, cuyas moléculas están formadas por dos átomos, di atómicas.
Avogadro estudio los gases y en 1811 formulo una ley que afirma: dos volúmenes iguales de gases diferentes contienen el mismo número de moléculas si sus condiciones de temperatura y presión son las mismas. Sin embargo, en el caso de tener O2 y He, habrá dos veces más moléculas de O2 ya que este gas es diatómico.
A medida que la tecnología iba avanzando, el estudio del átomo se abría camino con más facilidad.
En 1896 Becquerel, descubridor de la radioactividad supuso que los electrones tenían carga eléctrica. Cosa que Millikan , confirmó veinte años después.
En 1906 J.J. Thomson , supuso que Dalton estaba equivocado, porque el átomo estaba compuesto de electrones.
En 1911 Rutherford, lanzó la primera teoría sobre la estructura del átomo, en ella decía que los electrones giraban alrededor del núcleo como si fuera un sistema solar en miniatura. Esta teoría se mantuvo hasta 1913, fecha en la cual Bohr, lanzó una nueva teoría atómica, en ella decía que los electrones giran alrededor del núcleo en órbitas. Esta teoría todavía no era la definitiva, pero si la base de las teorías actuales sobre el átomo.
En 1916, Sommerfeld modifica el modelo de Bohr, que proponía que los electrones giraban en órbitas circulares, esto es, también pueden girar en órbitas elípticas.
En 1919 Rutherford descubrió que el núcleo de los átomos estaba compuesto por protones, y que estos tenían carga positiva.
En 1923, De Broglie había propuesto que los electrones tenían propiedades de ondas, así como también de partículas.
1925, Werner Heisenberg: Debido al comportamiento dual de los electrones (onda-partícula), surgió el enunciado más conocido como ‘Principio de incertidumbre’, que dice: “Es imposible determinar simultáneamente y con exactitud, la posición y la velocidad del electrón”.
En 1926, Schrodinguer para dar solución a este problema, introduce un nuevo concepto llamado Orbital atómico, que es la región del espacio donde la probabilidad de encontrar un electrón es máxima.
En 1932 Chadwick, descubrió el neutrón, una de las partículas fundamentales de la materia que se encuentra en el núcleo del átomo.
-El modelo atómico de Dalton, Thomson, Rutherford, Böhr.
DALTON:
Dalton dio a conocer por primera vez su teoría atómica en 1803, habían pasado más de dos mil años desde que Demócrito nombrara el átomo.Desarrolló un modelo científico y formulo una serie de postulados concernientes a la naturaleza de los átomos, los cuales destacaban la masa como una propiedad atómica fundamental. Basándose en los datos experimentales imperfectos de que disponía, Dalton propuso su teoría por medio de los siguientes postulados:
1. La materia está compuesta por partículas pequeñísimas llamadas átomos.
2. Los átomos son individuales y no pueden transformarse unos en otros.
3. No pueden ser creados ni destruidos.
4. Los elementos se hallan constituidos por átomos. Los átomos de un mismo elemento son idénticos en tamaño, forma, masa y todas las demás cualidades, pero diferentes a los átomos de los otros elementos.
5. Los átomos de unen para formar las moléculas, combinándose en proporciones fijas de números enteros y pequeños. Por ejemplo, un átomo de azufre (S) se combina con dos átomos de oxígeno (O) para formar la molécula SO2, y lo hacen siempre en la relación de 1:2.
6. Dos o más elementos, pueden combinarse de diferentes maneras para formar más de una clase de compuestos. Así, entre el azufre (S) y el oxígeno (O) se pueden formar dos compuestos diferentes, el SO2 y el CO2. En cada uno de estos compuestos hay una proporción de átomos y masa diferente pero definida y siempre en la relación de números enteros y pequeños.
Durante casi un siglo no se dudó de ninguno de los puntos esenciales de la teoría atómica propuesta por Dalton.
Modelo Atómico de John Thomson:
Para los científicos de 1900, al tomar como base los experimentos con rayos catódicos, rayos positivos y, en general, la relación entre materia y electricidad, era clara la necesidad de revisar el modelo atómico propuesto por Dalton.El descubrimiento del electrón realizado por John Thomson, físico británico, así como los llamados rayos canales o rayos positivos, que pueden observarse como un fino haz de luz detrás de un tubo de descarga con el cátodo perforado, llevó a la conclusión de que el átomo no podía ser una esfera rígida de material característico para cada elemento, como había supuesto ingenuamente Dalton, sino que debía poseer una estructura.
Aunque el nuevo modelo atómico explicaba la relación materia y electricidad, faltaban las bases fundamentales de la combinación química explicada por Dalton en su teoría atómica.
El modelo propuesto por Thomson consideraba al átomo como una esfera de masa cargada positivamente y sobre la cual flotan los electrones, exactamente como se encuentran las uvas, pasas o ciruelas sobre un pastel.
Modelo Atómico de Ernest Rutherford:
Rutherford, científico británico, nacido en Nueva Zelanda estudio de la radioactividad, descubierta a finales del s. XIX, había conducido a la hipótesis de que el número atómico representaba el número de unidades de carga positiva del átomo y, puesto que este es neutro, también el número de electrones. La naturaleza de las distintas radiaciones que emite el radio fue establecida por E. Rutherford en 1903 y, en 1911, el propio Rutherford inició una serie de experimentos cruciales de los que surgió el concepto de núcleo atómico.En estos experimentos, Rutherford y sus colaboradores H. Geiger y E. Marsden utilizaron una fuente de partículas y mediante la interposición de planchas de plomo, colimaron el haz de partículas y lo dirigieron sobre una lámina de oro muy fina. Las partículas atravesaron la lámina e incidían sobre una superficie cubierta de sulfuro de zinc, provocando un centelleo. A partir de la observación de este centelleo era posible concluir que la gran mayoría de las partículas atravesaban las láminas sin sufrir, o casi sin sufrir, desviación, mientras que algunas sufrían una desviación considerable e incluso unas pocas no lograban atravesar la lámina, rebotando en ella como una pelota contra una pared. Este resultado contradecía el modelo atómico de Thomson, ya que, en caso de ser ese correcto, las partículas no deberían sufrir diferentes desviaciones. Para explicarlo, Rutherford supuso que toda la carga positiva del átomo estaba concentrada en una región, a la que se dio el nombre de núcleo, cuyo diámetro era una diezmilésima del diámetro del átomo.
Los electrones, orbitando en torno al núcleo, equilibrarían la carga positiva de éste, que estaría representada por partículas denominadas protones, de carga igual y de signo contrario a la de los electrones. La materia está así prácticamente vacía, lo que explica que la mayoría de las partículas que incidan en la lámina de oro no se desvíen, mientras que las partículas que pasan cerca del núcleo de un átomo de oro sufren fuertes desviaciones, y las que inciden directamente sobre un núcleo, rebotan.
La casi totalidad de la masa del átomo correspondiente al núcleo, puesto que la masa del protón, según se había determinado experimentalmente, es 1836 veces mayor que la masa del electrón. Como se sabía que el número atómico representa el número de cargas positivas en el núcleo y puesto que el número de protones necesario para obtener las masas de los átomos era superior al número atómico, era preciso suponer que en el núcleo había, además de los protones que se neutralizaban mutuamente de manera que no <ejercían> como cargas, sino sólo aportando masa. Rutherford no se sentía satisfecho con la idea de que en el núcleo también hubiera electrones y en 1920 especuló con la posibilidad de que en el núcleo hubiera otras partículas de masa similar al protón, pero carentes de carga eléctrica a las que, por esta razón, se denominó neutrones. La existencia de neutrones fue confirmada por J. Chadwick en 1932, cuando identificó como constituida por esas partículas neutras la radiación obtenida al bombardear berilio con partículas.
Modelo Atómico de Rutherford
Para Ernest Rutherford, el átomo era un sistema planetario de electrones girando alrededor de un núcleo atómico pesado y con carga eléctrica positiva.El módelo atómico de Rutherford puede resumirse de la siguiente manera:
El átomo posee un núcleo central pequeño, con carga eléctrica positiva, que contiene casi toda la masa del átomo.
Los electrones giran a grandes distancias alrededor del núcleo en órbitas circulares.
La suma de las cargas eléctricas negativas de los electrones debe ser igual a la carga positiva del núcleo, ya que el átomo es eléctricamente neutro.
Rutherford no solo dio una idea de cómo estaba organizado un átomo, sino que también calculó cuidadosamente su tamaño (un diámetro del orden de 10-10 m) y el de su núcleo (un diámetro del orden de 10-14m). El hecho de que el núcleo tenga un diámetro unas diez mil veces menor que el átomo supone una gran cantidad de espacio vacío en la organización atómica de la materia.
Para analizar cuál era la estructura del átomo, Rutherford diseñó un experimento:
El experimento consistía en bombardear una fina lámina de oro con partículas alfa (núcleos de helio). De ser correcto el modelo atómico de Thomson, el haz de partículas debería atravesar la lámina sin sufrir desviaciones significativas a su trayectoria. Rutherford observó que un alto porcentaje de partículas atravesaban la lámina sin sufrir una desviación apreciable, pero un cierto número de ellas era desviado significativamente, a veces bajo ángulos de difusión mayores de 90 grados. Tales desviaciones no podrían ocurrir si el modelo de Thomson fuese correcto.
Modelo Atómico de Niels Böhr:
Para explicar la estructura del átomo, el físico danés Niels Bohr desarrolló en 1913 una hipótesis conocida como teoría atómica de Böhr.Supuso que los electrones están dispuestos en capas definidas, o niveles cuánticos, a una distancia considerable del núcleo. La disposición de los electrones se denomina configuración electrónica. El número de electrones es igual al número atómico del átomo: el hidrógeno tiene un único electrón orbital, el helio dos y el uranio 92. Las capas electrónicas se superponen de forma regular hasta un máximo de siete, y cada una de ellas puede albergar un determinado número de electrones. La primera capa está completa cuando contiene dos electrones, en la segunda caben un máximo de ocho, y las capas sucesivas pueden contener cantidades cada vez mayores. Ningún átomo existente en la naturaleza tiene la séptima capa llena. Los “últimos” electrones, los más externos o los últimos en añadirse a la estructura del átomo, determinan el comportamiento químico del átomo.
Todos los gases inertes o nobles (helio, neón, argón, criptón, xenón y radón) tienen llena su capa electrónica externa. No se combinan químicamente en la naturaleza, aunque los tres gases nobles más pesados (criptón, xenón y radón) pueden formar compuestos químicos en el laboratorio. Por otra parte, las capas exteriores de los elementos como litio, sodio o potasio sólo contienen un electrón. Estos elementos se combinan con facilidad con otros elementos (transfiriéndoles su electrón más externo) para formar numerosos compuestos químicos. De forma equivalente, a los elementos como el flúor, el cloro o el bromo sólo les falta un electrón para que su capa exterior esté completa. También se combinan con facilidad con otros elementos de los que obtienen electrones.
Las capas atómicas no se llenan necesariamente de electrones de forma consecutiva. Los electrones de los primeros 18 elementos de la tabla periódica se añaden de forma regular, llenando cada capa al máximo antes de iniciar una nueva capa. A partir del elemento decimonoveno, el electrón más externo comienza una nueva capa antes de que se llene por completo la capa anterior. No obstante, se sigue manteniendo una regularidad, ya que los electrones llenan las capas sucesivas con una alternancia que se repite. El resultado es la repetición regular de las propiedades químicas de los átomos, que se corresponde con el orden de los elementos en la tabla periódica.
Resulta cómodo visualizar los electrones que se desplazan alrededor del núcleo como si fueran planetas que giran en torno al Sol. No obstante, esta visión es mucho más sencilla que la que se mantiene actualmente.
Ahora se sabe que es imposible determinar exactamente la posición de un electrón en el átomo sin perturbar su posición. Esta incertidumbre se expresa atribuyendo al átomo una forma de nube en la que la posición de un electrón se define según la probabilidad de encontrarlo a una distancia determinada del núcleo. Esta visión del átomo como “nube de probabilidad” ha sustituido al modelo de sistema solar.
Modelo atómico de Schrödinger
Erwin Schrödinger (1887-1961), físico y premio Nobel austriaco, conocido sobre todo por sus estudios matemáticos de la mecánica ondulatoria y sus aplicaciones a la estructura atómica.La aportación más importante de Schrödinger a la física fue el desarrollo de una rigurosa descripción matemática de las ondas estacionarias discretas que describen la distribución de los electrones dentro del átomo. Schrödinger demostró que su teoría, publicada en 1926, era el equivalente en matemáticas a las teorías de mecánica matricial que había formulado el año anterior el físico alemán Werner Heisenberg.
Juntas, sus teorías constituyeron en buena medida la base de la mecánica cuántica. Schrödinger compartió en 1933 el Premio Nobel de Física con el británico Paul A. M. Dirac por su aportación al desarrollo de la mecánica cuántica. Su investigación incluía importantes estudios sobre los espectros atómicos, la termodinámica estadística y la mecánica ondulatoria.
CONCLUSIÓN
Dalton fue el primero que basándose en hechos experimentales construyó una teoría científica acerca de átomos. En ella, se postulaba la indivisibilidad atómica, idea que permitió el logro de resultados extraordinarios.Sin embargo, a fines del siglo XIX y a principios del siguiente, diversas experiencias sugirieron que el átomo era divisible, es decir, se hallaba constituido por otros corpúsculos. En efecto, J. Thomson observó que, en ocasiones, escapaban partículas cargadas con electricidad negativa a las que denominó electrones. A partir de ello, J. Thomson concibió el átomo como una esfera cargada positivamente en cuyo interior se hallaban electrones en movimiento.
En 1910, E. Rutherford llegó a la conclusión de que la carga eléctrica positiva del átomo, la de mayor peso, estaba concentrada e un pequeño volumen que denomino núcleo, admitiendo que los electrones giraban alrededor del mismo.
Cuatro años después, N. Bohr estableció un modelo atómico según el cual los electrones siguen trayectorias circulares y definidas alrededor del núcleo, que denominó órbitas, pudiendo saltar de una a otra órbita. En 1925, los estudios de W. Heisenberg y E. Schrödinger permitieron averiguar que no puede hablarse de órbita plenamente definidas, sino que únicamente cabe calcular la probabilidad de que un electrón se halle, en un cierto instante, en un lugar determinado.
Actualmente las ideas acerca del átomo siguen estas pautas probabilística y ondulatoria.
-Constitución del núcleo atómico y masa. Masa atómica. Isobaros, Isómeros, -Isotopos, Isótonos. Masa atómica y energías de ligación. Fuerzas nucleares. Modelo de la gota. etc.-
CARACTERÍSTICAS DEL ÁTOMO ACTUAL
Este modelo está basado en una serie de propuestas mecano-cuánticas, que permiten explicar todas las propiedades del átomo.En la actualidad no cabe pensar en el átomo como partícula indivisible, en él existen una serie de partículas subatómicas de las que protones neutrones y electrones son las más importantes.
Los átomos están formados por un núcleo, de tamaño reducido y cargado positivamente, rodeado por una nube de electrones, que se encuentran en la corteza.
PARTÍCULAS FUNDAMENTALES DEL ÁTOMO
ELECTRÓN
Es una partícula elemental con carga eléctrica negativa igual a 1,602 · 10-19 Coulomb y masa igual a 9,1093 · 10-28 g, que se encuentra formando parte de los átomos de todos los elementos.
NEUTRÓN
Es una partícula elemental eléctricamente neutra y masa ligeramente superior a la del protón (mneutrón=1.675 · 10-24 g), que se encuentra formando parte de los átomos de todos los elementos.
PROTÓN
Es una partícula elemental con carga eléctrica positiva igual a 1,602 · 10-19 Coulomb y cuya masa es 1837 veces mayor que la del electrón (mprotón=1.673 · 10-24 g). La misma se encuentra formando parte de los átomos de todos los elementos.
La nube de carga electrónica constituye de este modo casi todo el volumen del átomo, pero, sólo representa una pequeña parte de su masa. Los electrones, particularmente la masa externa determinan la mayoría de las propiedades mecánicas, eléctrica, químicas, etc., de los átomos, y así, un conocimiento básico de estructura atómica es importante en el estudio básico de los materiales de ingeniería.
En todos los átomos el número de protones es igual al número de electrones. Este número está determinado por número atómico.
El número de protones que existen en el núcleo, es igual al número de electrones que lo rodean. Este número es un entero, que se denomina número atómico y se designa por la letra, "Z".
La suma del número de protones y neutrones en el núcleo se denomina número másico del átomo y se designa por la letra, "A".
El número de neutrones de un elemento químico se puede calcular como A-Z, es decir, como la diferencia entre el número másico y el número atómico. No todos los átomos de un elemento dado tienen la misma masa. La mayoría de los elementos tiene dos ó más isótopos, átomos que tienen el mismo número atómico, pero diferente número másico. Por lo tanto la diferencia entre dos isótopos de un elemento es el número de neutrones en el núcleo.
Tabla periódica
A mediados del siglo XIX varios químicos se dieron cuenta de que las similitudes en las propiedades químicas de diferentes elementos suponían una regularidad que se podía ilustrar ordenándolos de forma tabular o periódica.
-Electrones planetarios o periféricos. Postulados de Dalton y Bhor.- -Energía de los electrones--Introducción de la teoría de Plank.- Principio de exclusión de Paulli.- Distribución de los electrones en las órbitas.-
En el año 1927, E.Schrödinger ( Premio Nobel de Física 1933), apoyándose en el concepto de dualidad onda-corpúsculo enunciado por L.de Broglie (Premio Nobel de Física 1929), formula la Mecánica Ondulatoria, y W. Heisenberg ( Premio Nobel de Física 1932) la Mecánica de Matrices. Ambas mecánicas inician un nuevo camino en el conocimiento de la estructura atómica, y ampliadas por Born, Jordan, Dirac y otros han dado lugar a lo que actualmente se denomina Mecánica Cuántica. Frente al determinismo de la mecánica clásica, la mecánica cuántica, es esencialmente probabilística y utiliza un aparato matemático más complicado que la mecánica clásica. Actualmente, el modelo atómico que se admite es el modelo propuesto por la mecánica cuántica (modelo de Schrödinger).El modelo de Bohr es un modelo unidimensional que utiliza un número cuántico (n) para describir la distribución de electrones en el átomo. El modelo de Schrödinger permite que el electrón ocupe un espacio tridimensional. Por lo tanto requiere tres números cuánticos para describir los orbitales en los que se puede encontrar al electrón. La descripción del átomo mediante la mecánica ondulatoria está basada en el cálculo de las soluciones de la ecuación de Schrödinger; está es una ecuación diferencial que permite obtener los números cuánticos de los electrones. La llamada función de onda, contiene la información sobre la posición del electrón. También se denomina orbital, por analogía con las órbitas de los modelos atómicos clásicos.
Las soluciones, o funciones de onda, son funciones matemáticas que dependen de unas variables que sólo pueden tomar valores enteros. Estas variables de las funciones de onda se denominan NÚMEROS CUÁNTICOS: número cuántico principal, (n), angular (l) y número cuántico magnético (ml). Estos números describen el tamaño, la forma y la orientación en el espacio de los orbitales en un átomo.
El número cuántico principal (n) describe el tamaño del orbital, por ejemplo: los orbitales para los cuales n=2 son más grandes que aquellos para los cuales n=1. Puede tomar cualquier valor entero empezando desde 1: n=1, 2, 3, 4, etc.
El número cuántico del momento angular orbital (l) describe la forma del orbital atómico. Puede tomar valores naturales desde 0 hasta n-1 (siendo n el valor del número cuántico principal). Por ejemplo si n=5, los valores de l pueden ser: l= 0, 1 ,2, 3, 4. Siguiendo la antigua terminología de los espectroscopistas, se designa a los orbitales atómicos en función del valor del número cuántico secundario, l, como:
l = 0 orbital s (sharp)
l = 1 orbital p (principal)
l = 2 orbital d (diffuse)
l = 3 orbital f (fundamental)
El número cuántico magnético (ml), determina la orientación espacial del orbital. Se denomina magnético porque esta orientación espacial se acostumbra a definir en relación a un campo magnético externo. Puede tomar valores enteros desde -l hasta +l. Por ejemplo, si l=2, los valores posibles para m son: ml=-2, -1, 0, 1, 2.
El número cuántico de espín (s), sólo puede tomar dos valores: +1/2 y -1/2.
Capas y Subcapas principales
Todos los orbitales con el mismo valor del número cuántico principal, n, se encuentran en la misma capa electrónica principal o nivel principal, y todos los orbitales con los mismos valores de n y l están en la misma subcapa o subnivel.
El número de subcapas en una capa principal es igual al número cuántico principal, esto es, hay una subcapa en la capa principal con n=1, dos subcapas en la capa principal con n=2, y así sucesivamente. El nombre dado a una subcapa, independientemente de la capa principal en la que se encuentre, esta determinado por el número cuántico l, de manera que como se ha indicado anteriormente: l=0 (subcapa s), l=1 (subcapa p), l=2 (subcapa d) y l=3 (subcapa f).
El número de orbitales en una subcapa es igual al número de valores permitidos de ml para un valor particular de l, por lo que el número de orbitales en una subcapa es 2l+1. Los nombres de los orbitales son los mismos que los de las subcapas en las que aparecen
FORMA Y TAMAÑOS DE LOS ORBITALES
La imagen de los orbitales empleada habitualmente por los químicos consiste en una representación del orbital mediante superficies límite que engloban una zona del espacio donde la probabilidad de encontrar al electrón es del 99%. La extensión de estas zonas depende básicamente del número cuántico principal, n, mientras que su forma viene determinada por el número cuántico secundario, l.
Los orbitales s (l=0) tienen forma esférica. La extensión de este orbital depende del valor del número cuántico principal, asi un orbital 3s tiene la misma forma pero es mayor que un orbital 2s.
Los orbitales p (l=1) están formados por dos lóbulos idénticos que se proyectan a lo largo de un eje. La zona de unión de ambos lóbulos coincide con el núcleo atómico. Hay tres orbitales p (m=-1, m=0 y m=+1) de idéntica forma, que difieren sólo en su orientación a lo largo de los ejes x, y o z.
Los orbitales d (l=2) también están formados por lóbulos. Hay cinco tipos de orbitales d (que corresponden a m=-2, -1, 0, 1, 2)
Los orbitales f (l=3) también tienen un aspecto multilobular. Existen siete tipos de orbitales f (que corresponden a m=-3, -2, -1, 0, +1, +2, +3).
Una vez descritos los cuatro números cuánticos, podemos utilizarlos para describir la estructura electrónica del átomo de hidrógeno:
El electrón de un átomo de hidrógeno en el estado fundamental se encuentra en el nivel de energía más bajo, es decir, n=1, y dado que la primera capa principal contiene sólo un orbital s, el número cuántico orbital es l=0. El único valor posible para el número cuántico magnético es ml=0. Cualquiera de los dos estados de spin son posibles para el electrón. Así podríamos decir que el electrón de un átomo de hidrógeno en el estado fundamental está en el orbital 1s, o que es un electrón 1s, y se representa mediante la notación:
1s1
en donde el superíndice 1 indica un electrón en el orbital 1s. Ambos estados de espín están permitidos, pero no designamos el estado de espín en esta notación.
Entendido el tema de las capas, y sabiendo que cada una de ellas representa un nivel de energía en el átomo, diremos que:
1. Existen 7 niveles de energía o capas donde pueden situarse los electrones para girar alrededor del núcleo, numerados del 1, el más interno o más cercano al núcleo (el que tiene menor nivel de energía), al 7, el más externo o más alejado del núcleo (el que tiene mayor nivel de energía).
Estos niveles de energía corresponden al número cuántico principal (n) y además de numerarlos de 1 a 7, también se usan letras para denominarlos, partiendo con la K. Así: K =1, L = 2, M = 3, N = 4, O = 5, P = 6, Q = 7.
2. A su vez, cada nivel de energía o capa tiene sus electrones repartidos en distintos subniveles, que pueden ser de cuatro tipos: s, p, d, f.
Para determinar la configuración electrónica de un elemento sólo hay que saber cuantos electrones debemos acomodar y distribuir en los subniveles empezando con los de menor energía e ir llenando hasta que todos los electrones estén ubicados donde les corresponde. Recordemos que partiendo desde el subnivel s, hacia p, d o f se aumenta el nivel de energía.
3. En cada subnivel hay un número determinado de orbitales que pueden contener, como máximo, 2 electrones cada uno. Así, hay 1 orbital tipo s, 3 orbitales p, 5 orbitalesd y 7 del tipo f. De esta forma el número máximo de electrones que admite cada subnivel es: 2 en el s; 6 en el p (2 electrones x 3 orbitales); 10 en el d (2 x 5); 14 en el f (2 x 7)..
La distribución de niveles, subniveles, orbitales y número de electrones posibles en ellos se resume, para las 4 primeras capas, en la siguiente tabla:
Insistiendo en el concepto inicial, repetimos que la configuración electrónica de un átomo es la distribución de sus electrones en los distintos niveles, subniveles y orbitales. Los electrones se van situando en los diferentes niveles y subniveles por orden de energía creciente (partiendo desde el más cercano al núcleo) hasta completarlos.
Recordemos que alrededor del núcleo puede haber un máximo de siete capas atómicas o niveles de energía donde giran los electrones, y cada capa tiene un número limitado de ellos.
La forma en que se completan los niveles, subniveles y orbitales está dada por la secuencia que se grafica en el esquema conocido como regla de las diagonales:
Es importante saber cuántos electrones existen en el nivel más externo de un átomo pues son los que intervienen en los enlaces con otros átomos para formar compuestos.
Configuraciones electrónicas
Para explicar determinadas características de los espectros de emisión se consideró que los electrones podían girar en torno a un eje propio, bien en el sentido de las agujas del reloj o en el sentido contrario. Para caracterizar esta doble posibilidad se introdujo el número cuántico de espín (ms) que toma los valores de + ½ o – ½..
Para entender el concepto de configuración electrónica es necesario asumir o aplicar dos principios importantes:
• Principio de Incertidumbre de Heisenberg: “Es imposible determinar simultáneamente la posición exacta y el momento exacto del electrón”
• Principio de Exclusión de Pauli: “Dos electrones del mismo átomo no pueden tener los mismos números cuánticos idénticos y por lo tanto un orbital no puede tener más de dos electrones”.
Escribir la configuración electrónica de un átomo consiste en indicar cómo se distribuyen sus electrones entre los diferentes orbitales en las capas principales y las subcapas. Muchas de las propiedades físicas y químicas de los elementos pueden relacionarse con las configuraciones electrónicas.
Esta distribución se realiza apoyándonos en tres reglas: energía de los orbitales, principio de exclusión de Paulli y regla de Hund.
1. Los electrones ocupan los orbitales de forma que se minimice la energía del átomo. El orden exacto de llenado de los orbitales se estableció experimentalmente, principalmente mediante estudios espectroscópicos y magnéticos, y es el orden que debemos seguir al asignar las configuraciones electrónicas a los elementos. El orden de llenado de orbitales es:
1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6
-Para recordar este orden más fácilmente se puede utilizar el diagrama siguiente:
Empezando por la línea superior, sigue las flechas y el orden obtenido es el mismo que en la serie anterior. Debido al límite de dos electrones por orbital, la capacidad de una subcapa de electrones puede obtenerse tomando el doble del número de orbitales en la subcapa. Así, la subcapa s consiste en un orbital con una capacidad de dos electrones; la subcapa p consiste en tres orbitales con una capacidad total de seis electrones; la subcapa d consiste en cinco orbitales con una capacidad total de diez electrones; la subcapa f consiste en siete orbitales con una capacidad total de catorce electrones.
En un determinado átomo los electrones van ocupando, y llenando, los orbitales de menor energía; cuando se da esta circunstancia el átomo se encuentra en su estado fundamental. Si el átomo recibe energía, alguno de sus electrones más externos pueden saltar a orbitales de mayor energía, pasando el átomo a un estado excitado.
2. Principio de exclusión de Pauli.
En un átomo no puede haber dos electrones con los cuatro número cuánticos iguales.
Los tres primeros número cuánticos, n, l y ml determinan un orbital específico. Dos electrones, en un átomo, pueden tener estos tres números cuánticos iguales, pero si es así, deben tener valores diferentes del número cuántico de espín. Podríamos expresar esto diciendo lo siguiente: en un orbital solamente puede estar ocupado por dos electrones y estos electrones deben tener espines opuestos.
3. Regla de Hund.
Al llenar orbitales de igual energía (los tres orbitales p, los cinco orbitales d, o los siete orbitales f) los electrones se distribuyen, siempre que sea posible, con sus espines paralelos, es decir, desapareados.
Ejemplo:
La estructura electrónica del 7N es: 1s2 2s2 2px1 2py1 2pz1
RESUMEN:
La envoltura electrónica se divide en niveles de energía, cada nivel de energía en subniveles, y cada subnivel en orbitales.Los niveles de energía son 1, 2, 3, 4, 5, 6 y 7 que también se representan por K, L, M, N, O, P y Q, estos niveles de energía acepta un número determinado de electrones, y para átomos conocidos cumplen la fórmula: 2n2, donde, n representa el número de nivel de energía.
Los subniveles de energía son cuatro: s, p, d y f, cada subnivel de energía acepta un número determinado de electrones, así, s acepta 2 e-, p acepta 8 e-, f acepta 18 e- y d acepta 32e-.
En el caso de los orbitales, son subdivisiones de los subniveles, que solo pueden aceptar o admitir 2e- como máximo con sus espines necesariamente opuestos. El espín proviene del inglés spin = giro, por lo tanto el espín es el movimiento del electrón sobre su propio eje.
La tabla periódica y estructura electrónica, han sido construidas en base a las estructuras electrónicas de los elementos en el que se añade 1 e- por cada casilla que avanza, llamado electrón diferenciador. Por consiguiente, la configuración electrónica, es la distribución de los electrones de un átomo en niveles, subniveles y orbitales, es importante para esto tomar en cuenta la regla de Hund que dice que primero debe tener cada orbital 1 e- y solo después se los debe ir pareando. Ejemplo:
3Li = 1s2 2s1
En este ejemplo, el litio tiene 3 electrones que se distribuyen de la siguiente manera, dos electrones en el nivel K, número máximo de electrones que puede aceptar el nivel K y el subnivel 1s, y el otro electrón se ubica en el nivel L y subnivel 2s.
Un orbital es una región del espacio aledaño al núcleo, en la que existe la mayor probabilidad de encontrar un electrón. La representación geométrica de los orbitales, es la representación gráfica de los átomos, tomando en cuenta la forma, tamaño y orientación de sus orbitales. En el caso de la forma, los orbitales pueden tener forma esférica o bilobulada. El tamaño depende del nivel de energía a que pertenece. La orientación de los orbitales se los representa en el espacio utilizando como referencia los ejes coordenadas x, y, z, el núcleo por ser tan diminuto queda representado por el punto en que se cruzan los tres ejes.